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ABSTRACT  
 
Following a successful preliminary evaluation of the 
NDFD-based solar radiation forecasts for several 
climatically distinct locations, the evaluation is now 
continued by testing the forecasts’ end-use operational 
accuracy, focusing on their ability to accurately predict the 
effective capacity of grid-connected PV power plants. The 
predicted and actual utility peak load reduction performance 
of PV power plants are compared for two case studies: 
ConEdison in New York City, and Sacramento Municipal 
Utility District, in California 
 
 
1. BACKGROUND 
 
The effective capacity quantifies a power plant’s ability to 
provide adequate power generation at critical load demand 
times. Several studies by Perez et al. (1998, 2006) have 
found the effective capacity of PV to be high when load 
demand is driven by commercial air conditioning. However 
skepticism still prevails among grid operators because the 
output of PV power plants cannot be controlled or 
dispatched. Grid operators would be more comfortable if 
capacity could be ascertained operationally by knowing in 
advance what the output of solar power plants would be, 
particularly when the grid is expected to be strained from 
high demand. 
 
This need to know power plant output in advance is not 
limited to PV: indeed a large proportion of wholesale 
electric power transactions are made on the day-ahead 
market. On this market, energy producers bid in advance for 

the sale of electric power as a function of time of day. Stiff 
penalties occur if a producer fails to deliver. 
 
PV forecasts will be of importance to both power generators 
and grid operators, because (1) a growing grid-connected 
PV base will affect the day-ahead market by modifying the 
load demand forecast; and (2) some PV operators may be 
interested in taking part in the day-ahead market. Both 
arguments become critical during times of peak demand 
when the grid is stressed and when energy values and 
penalties are very high, hence the importance of properly 
ascertaining forecasted PV capacity. 
 
 
2. APPROACH 
 
Through two exploratory case studies, we evaluate the 
accuracy of predicting the effective capacity of PV, on a 
day-ahead and a two-days-ahead basis, by comparing after-
the-fact and forecasted effective capacities 
 
The two case studies include New York City, NY, for the 
summer of 2006, and Sacramento, CA, for the summer of 
2005. The utilities servicing both cities -- respectively 
Consolidated Edison (ConEd) and Sacramento Municipal 
Utility District (SMUD) -- are summer-peaking, and 
therefore, experience maximum grid stress and high price 
conditions during the selected summer time period. 
 
For New York City we have access to both actual loads and 
load forecasts (NYISO, 2006). Forecasted PV outputs are 
derived from the NOAA cloud cover forecasts (NDFD, 
2005-6).  After-the-fact PV data are simulated using 
time/site specific satellite-derived irradiances (Perez et al., 



2002).  We can thus compare operational forecast conditions 
– i.e., using forecasted loads and forecasted PV output – 
against after-the-fact situations – i.e., using actual loads and 
satellite-derived PV data. In addition, we can decouple the 
uncertainty of solar radiation and load forecasts by 
analyzing forecasted conditions when load is ideally 
predicted – i.e., using forecasted PV but actual loads. 
 
For Sacramento, we only have access to actual load data 
(Obadiah, 2005). So the comparison focuses solely on the 
accuracy of the solar forecasts, removing the uncertainty of 
the load forecasts. 
 
 
3. METHODOLOGY 
 
3.1 Defining Effective Capacity Metrics 
 
The effective capacity of PV is quantified using two 
metrics: 
 
1. Effective Load Carrying Capability (ELCC): The 

ELCC of a power generator represents its ability to 
effectively increase the generating capacity available to 

a utility or a regional power grid without increasing the 
utility’s loss of load risk. For instance, a utility with a 
current peaking capability of 2.5 GW could increase its 
peaking capability to 2.55 GW with the same reliability 
by adding 100 MW of new generation, provided the 
ELCC of the new generation is 50 MW, or in relative 
terms, 50%. As described by Garver (1966), the ELCC 
may be extracted from time series of [forecasted] load 
and power generation – here PV generation – data. 

 
2. Solar Load Control (SLC): This metric answers the two 

following questions: (1) how much energy backup (e.g., 
from load management) would be necessary, 
cumulatively over an entire peak demand season, to 
guaranty a PV effective capacity of 100%; and (2) how 
much more backup energy would be required to 
accomplish the same task without PV? A visual 
representation of the SLC metric is shown in Fig. 1. 

 
Effective capacity is a function of both PV penetration 
within the considered power grid, and PV array orientation 
and tilt.  For this study, we investigated penetration levels 
ranging from 2% to 20%. For all simulations, we selected a 
stationary PV configuration well suited to match mid-

afternoon peak demand: 
facing southwest with a 
slope of 30o. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Utility load durations curves typically consist of one year worth of hourly loads 
sorted from highest to lowest. The peak region of the curves provides information on 
peaking generation requirements and utilization.  The example above (for Salt River 
Project in 2003) shows load duration curves without PV and with simulated PV at 10% 
penetration. The light shaded area represents the load control required to reduce peak 
generation by 500 MW without PV. The heavy shaded area represents the amount of SLC 
required to accomplish the same goal with PV. 
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3.2 Experimental Data 
 
Forecasted hourly PV 
outputs are simulated from 
forecasted hourly 
irradiances using the 
program PVFORM 
(Menicucci & Fernandez, 
1988). Forecasted hourly 
irradiances are derived 
from 3-hourly irradiance 
forecasts via time 
extrapolation at constant 
clearness index, kt’ (Perez 
et al., 1990). The 3-hourly 
irradiance forecasts are 
modeled from the gridded 
NDFD’s 3-hourly cloud 
amount forecasts (NDFD, 
2005.6) using the 
methodology previously 
presented by Perez et al. 
(2005 and 2006). 
 
Actual (after-the-fact) PV 
outputs are simulated from 
satellite-derived hourly 



irradiances. The satellite methodology and its accuracy have 
been presented and discussed in detail in several 
publications (Perez et al., 2002 and 2004). 
 
Actual hourly loads for the city of New York were obtained 
from the New York Independent System Operator (NYISO, 
2006). Sacramento load data were obtained courtesy of 
SMUD (Obadiah, 2005). 
 
Forecasted load data archives for the Sate of New York are 
publicly available and downloadable from the NYISO web 
site (NYISO, 2006). 

All data sets for New 
York cover a period 
from May 22 through 
September 5, 2006. 
Data for Sacramento 
are from June 27 
through October 31, 
2005.  
 
 
4. RESULTS 
 
1. Overall irradiance 
Forecast verification 
 
The accuracy of next-
day and two-day 
global irradiance 
forecasts for all data 
points during the 
considered time period 
is illustrated in Fig. 2 
for New York and Fig. 
3 for Sacramento. 
Note, again, that 
satellite-derived 
irradiances are used 
“ground-truth” for the 
forecasts.  
 
Results are fully 
consistent with 
previous evaluations 
both in terms of scatter 
and bias. Errors are 
comparable despite the 
added noise of 
extrapolation from 3-
hourly to hourly time 
series. Note that 
forecasts are 
remarkably good in 
Sacramento with 10% 

RMSE during the largely clear summer season 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: One- and two-day forecasts vs. actual (satellite-derived) GHI in New York City 
(summer 2006) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: One- and two-day forecasts vs. actual (satellite-derived) GHI in Sacramento (summer 
2005) 
 
 

 
2. Overall utility load forecast verification 
 
Actual and forecasted hourly loads are compared in Fig. 4. 
This comparison is only available for New York City where 
we have access to both load and load forecast data. Load 
forecasts which are constantly fine-tuned by grid-operators 
are expectedly more accurate overall than solar forecasts; 
moreover, load forecasts depend first and foremost on 
temperature forecasts – better mastered than cloud amount 
forecasts – and, because of the inertia of load demand 
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spanning several days, also depend on known current and 
past information. 
 
3. Capacity forecast verification using ideal load forecasts
 
Because capacity is determined by the ability of PV to 
deliver during critical peak hours, the accuracy of the 
forecast during these critical events is the most relevant 
benchmark, regardless of overall accuracy.  
 
Here, we focus solely on the solar forecast performance, 
using actual load data (i.e., assuming that loads are ideally 
forecasted). The results for ELCC are presented in Table 1 
for NYC and Sacramento. SLC results are in Table 2. 
 
Both forecasted capacity credit metrics are very close 
(within 1-2%) to the values obtained after the fact.  
 
4.  Operational capacity forecast evaluation
 
In this evaluation context we can fully assess the operational 
forecast accuracy – but only in New York – by using both 
forecasted loads and solar forecasts. The results for the 
ELCC and SLC capacity metrics are given in Table 3 and 
Table 4, respectively.  Forecasts are close to the after-the-
fact values, but the accuracy is not nearly as good as when 
the load is ideally predicted. For both metrics, the load 
forecast is a larger source of capacity credit prediction error 
than the solar forecasts  
 
 
5. DISCUSSION  
 
The overall accuracy of hourly solar forecast observed in 
this study is consistent with, and confirms previous 

assessments:  Little 
bias, and dispersion 
ranging from the low 
10% for clear sites to 
30-35% for partly 
cloudy climates. 

  

 
The critical [peak 
demand time] solar 
forecasts are 
satisfactory and lead 
to predicted capacity 
credit values which 
are very close to 
achieved values. It is 
interesting to remark 
that in New York, the 
load forecasts turn out 
to be a larger source 
of prediction error 

than the solar forecasts, despite a much better overall 
accuracy. This observation may be indicative of the fact 
that, because the sun indirectly drives peak demand, the load 
will naturally tend to match the solar forecast error (e.g., if 
the forecasted irradiance is too high, the load will likely be 
lower than predicted, leading to a predicted capacity credit 
value close to the forecast).  
 
The results of these study should, of course be confirmed 
with larger data samples. Nevertheless, the evidence 
presented here suggests that solar forecasts could be used 
effectively to manage solar resource on the power grid, and 
bring the needed confidence to grid operators: that PV 
capacity can be predictably ascertained on a day-ahead 
market. 
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Figure 4: One- and two-day load forecasts vs. actual loads for New York City (summer 2006) 
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TABLE 1 
Comparing after-the-fact and forecasted ELCC  

As a function of grid penetration 
In Sacramento and New York City using ideal load forecasts 

 
 

GRID PENETRATION
2.00% 5.00% 10.00% 15.00% 20.00%

SACRAMENTO
After the fact 68% 66% 62% 57% 51%
1-day forecast 71% 68% 64% 59% 53%
2-day forecast 71% 69% 64% 59% 53%
NEW YORK
After the fact 61% 56% 47% 39% 33%
1-day forecast 61% 57% 50% 42% 35%
2-day forecast 59% 55% 48% 41% 35%

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
TABLE 2 

Comparing after-the-fact and forecasted solar load control parameter 
As a function of grid penetration 

In Sacramento and New York City using ideal load forecasts 
 
 
 
 
 
 
 
 
 
 
 
 

GRID PENETRATION
2.00% 5.00% 10.00% 15.00% 20.00%

SACRAMENTO
MWH needed without PV 127      830      4,989   17,416   41,417   
fraction needed with PV (after the fact) 13% 8% 8% 8% 12%
fraction needed with PV (1-day forecast) 11% 6% 6% 7% 11%
fraction needed with PV (2-day forecast) 11% 6% 6% 7% 10%
NEW YORK
MWH needed without PV 1,453     9,069     37,016   93,059   204,704 
fraction needed with PV (after the fact) 6% 13% 23% 28% 30%
fraction needed with PV (1-day forecast) 6% 10% 22% 25% 26%
fraction needed with PV (2-day forecast) 7% 13% 23% 27% 28%

(note: the first row for each city represents the total amount of load management necessary 
without PV to accomplish peak load reduction amounting to the installed PV capacity, the % 
numbers in the other rows represent the fraction of the first row’s amount that would be needed if 
PV was deployed – the lower the % value, the higher the capacity of PV. 

 
 
 

TABLE 3 
Comparing after-the-fact and forecasted ELCC  

As a function of grid penetration 
In New York City using operational load forecasts 

 
 GRID PENETRATION

2.00% 5.00% 10.00% 15.00% 20.00%
NEW YORK
After the fact 61% 56% 47% 39% 33%
1-day forecast 66% 62% 53% 44% 37%
2-day forecast 64% 61% 54% 46% 39%

 
 
 
 
 
 
 
 

TABLE 4 
Comparing after-the-fact and forecasted solar load control parameter 

As a function of grid penetration 
In New York City using operational load forecasts 

 
 
 
 
 
 
 

GRID PENETRATION
2.00% 5.00% 10.00% 15.00% 20.00%

NEW YORK
MWH needed without PV (actual load) 1,453     9,069     37,016   93,059   204,704 
MWH needed without PV (forecasted load) 820        4,901     21,210   56,910   132,436 
fraction needed with PV (after the fact) 6% 13% 23% 28% 30%
fraction needed with PV (1-day forecast) 9% 12% 13% 19% 21%
fraction needed with PV (2-day forecast) 12% 10% 14% 19% 20% 
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